Modelling prediction of the microcapsule size of polyelectrolyte complexes produced by atomization

Edgar P. Herrero, E.M. Martín Del Valle *, M.A. Galán

Department of Chemical Engineering, University of Salamanca, P/Los Caídos S/N, 37008 Salamanca, Spain

Received 30 November 2005; received in revised form 17 April 2006; accepted 19 April 2006

Abstract

In order to have a better understanding of the atomization process for microencapsulation applications the disintegration of polymer liquid jets (sodium alginate) injected into high-velocity gas streams was studied and a mathematical model to predict the microparticle size has been developed.

Air-blast atomization of viscous non-Newtonian fluid (alginate solution) was carried out in order to produce microbeads (1–50 μm) based on polyelectrolyte complexes with particle size control and a particle size distribution with a relative span factor, \((D_{0.9} - D_{0.1})/D_{0.5}\), less than 1.4. The accuracy of the wave-mechanisms-based models in predicting droplet size after breakup of alginate solution has been demonstrated. The atomized microparticle size were expressed in terms of three dimensionless groups, the liquid/air mass ratio, the Weber number and the Ohnesorge number in simple forms whose exponents and coefficients were determined by least-squares fit to the experimental data. With these data two semi-empirical models have been proposed to predict the particle size obtained from the microencapsulation. Both models allow the prediction of particle size of the microcapsules obtained by atomization processes.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Air-blast atomization; Particle size prediction; Wave mechanisms

1. Introduction

In the rapidly changing scientific world, contributions of scientists and engineers are leading to major new solutions of significant medical problems [1,2].

The most common method of administration of drugs is in the form of pills or injections. These methods of administration meet the requirements of efficacy for several drugs, with regard to the introduction and elimination of the drug in the organism, its absorption in blood, and its distribution to points where it is necessary. However, these methods are inadequate for many new drugs such as hormones and vaccines. These protein drugs are usually high molecular weight proteins and are very sensitive to environmental conditions. Most proteins cannot be delivered orally due to problems related to degradation in the acidic environment of the gastrointestinal tract. Moreover, the high molecular weight of these substances often results in poor absorption in to the blood stream when administered orally.

The most common mode of administration of these therapeutic proteins is intravenous injections, which are usually not well tolerated by the recipient. Also, most of these proteins have short half-lives in the blood stream and need to be administered frequently in high doses to obtain therapeutic efficacy. Systemic administration in high doses can lead to side effects and can also be toxic. To overcome these difficulties, new technologies, like the microencapsulation, have been developed [3–6]. Microencapsulation is a process by which the active material is enclosed in a polymeric matrix and surrounded by a coating to produce capsules in the micrometer range known as microcapsules. The most important application of this technology is the immobilization of stem cells for cellular therapy to the treatment of the most devastating diseases. To do that, is needed the administration of the microcapsules via injection Hamilton and aerosol that requires particles diameter below 50 μm.

These technologies are based on the use of polymers. Polysaccharides, such as alginate, have been widely used in the microencapsulation technology. Alginates is a water-soluble linear polysaccharide extracted from brown seaweed, and is composed of alternating blocks of 1-4-linked α-L-guluronic and β-polymannuronic acid residues. Alginates has an excellent bio-

* Corresponding author.
E-mail address: emvalle@usal.es (E.M.M. Del Valle)
Most methods of microencapsulation involve one of two harsh conditions (contact with an organic solvent and/or heating during processing), which usually is a problem, especially for biomaterials handling [4,5]. The previous work done on microencapsulation without harsh conditions produce capsules with diameters ranged between 300 and 1000 μm [6–14].

Several attempts have been done in order to produce very small particles based on polyelectrolyte complexes, but there is not a technology able to produce these microcapsules below 300 μm, with control size and a particle size distribution with a relative span factor less than 1.4 [8–14].

For that reason, based in atomization processes, a microencapsulation technology of polyelectrolyte complex beads (alginate–barium), which produced very small particles (1–50 μm) has been developed.

Atomization is a process in which the disruptive action of externally applied aerodynamic forces is opposed by the solidifying influences of the liquid viscosity and surface tension forces. Disintegration of liquid jets injected into quiescent and high-velocity gas streams has been studied by many researchers.

Theoretical and experimental studies on the mechanism of atomization have been carried out by Rayleigh, Tyler, Weber, Haenlein, Ohnesorge and Castleman [15]. Detailed reviews of earlier work have been published by Giffen and Muraszew [16], and more recently by Chigier [17], and Lefebvre [15].

During the last decade atomization techniques as air-blast or twin-fluid atomization has been widely used taking the place of spray drying [12–14].

In air-blast atomization, low-speed liquid jets are accelerated by the surrounding high-speed gas flow, usually in the spray flow direction. The liquid is subjected to both tensile and shear-stressing forces. The magnitude of the extension has been shown to be significant for applications involving polymer solutions. Twin-fluid atomizers have a number of advantages over pressure atomizers including lower requirements for the liquid injection pressure and finer sprays. Unfortunately, the process of air-blast atomization is very complex and its physical mechanisms are not fully understood [15].

Therefore, in order to have a better understanding of the atomization process for microencapsulation applications the disintegration of polymer liquid jets (sodium alginate) injected into high-velocity gas streams were studied. Two semi-empirical models of air-blast atomization based on the wave mechanism of breakup of non-Newtonian polymer have been developed. Both models allow the prediction of particle size of the microcapsules obtained by atomization processes. The experimental data of the microcapsules size were compared with the models predictions.

2. Materials and methods

2.1. Material

Sodium alginate from macrocystis pyrifera (medium viscosity) was purchased from Sigma Chemicals, barium chloride dihydrate, reagent grade was purchased from Scharlau.
2.3. Particle size analysis

We have obtained the particle size distribution of the microcapsules produced with laser diffractometry. To do that we have used a Leeds and Northrup Microtac Particle Size Analyzer. This device utilizes the phenomenon of scattered light from a laser beam projected through a stream of particles.

The droplet size distribution is frequently characterized by its Sauter mean diameter (SMD), which is the diameter of that drop beam projected through a stream of particles. The SMD is influenced by the properties of the atomized and atomizing fluids and by the nozzle design and operating conditions.

The experimental conditions span a wide range of Weber numbers and are presented in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alginate flow rate (g/s)</td>
<td>3.00–37.00</td>
</tr>
<tr>
<td>Alginate exit velocity (m/s)</td>
<td>0.02–0.24</td>
</tr>
<tr>
<td>Air mass flow rate (g/s)</td>
<td>101.17–178.00</td>
</tr>
<tr>
<td>Air exit velocity (m/s)</td>
<td>513.49–903.84</td>
</tr>
<tr>
<td>Weber number, W</td>
<td>9492.10–29409.55</td>
</tr>
<tr>
<td>Alginate kinematic viscosity (m²/s)</td>
<td>6.45 × 10⁻⁵</td>
</tr>
<tr>
<td>Surface tension (N/m)</td>
<td>0.50</td>
</tr>
<tr>
<td>Ohnesorge number, Z</td>
<td>0.21</td>
</tr>
</tbody>
</table>

belonging to the sample spray under examination. Usually the concept of SMD is defined as:

\[
\text{SMD} = \frac{\int_0^\infty D^3 dN}{\int_0^\infty D^2 dN}
\]

where, \(D\) is the droplet diameter, and \(dN\) stands for the percentage of the total number of droplets with a diameter contained in the interval \([D, D+dD]\).

The SMD is influenced by the properties of the atomized and atomizing fluids and by the nozzle design and operating conditions.

3. Wave mechanisms and size distribution

In various ways of atomization, small disturbances in the jet or sheet will start growing across the liquid, which eventually disintegrates into ligaments and then drops, thus increasing the specific surface area of the liquid exposed to the gas medium and thereby achieving high rates of heat transfer, mixing, and evaporation.

Essentially, all that is needed for liquid atomization is a high relative velocity between the liquid to be atomized and its surrounding air or gas. This can be achieved through the increase of the liquid kinetic energy, or by the exposure of relative slow moving liquid to a high air or gas velocity, or by applying external mechanical energy on the liquid through the utilization of a rotating or vibrating device to increase the energy carried within the liquid to over come the consolidating surface tension force. Based on the forms of energy applied, atomizers are classified into pressure atomizer, pressure swirl atomizer, twin-fluid atomizer, rotary atomizers, electrostatic and ultrasonic atomizers, etc. [15]

In this work a twin-phased gas–liquid atomizer was used. In this way, the kinetic energy carried with high velocity gas stream is utilized to disintegrate the relatively low velocity liquid sheet or jet into droplets. A variety of these atomizers is the airblast atomizer, in which, an annular liquid sheet exiting from the atomizer is exposed to an inner and an outer air streams moving at high velocities (Fig. 2). The liquid is subjected to both tensile and shearing stresses.

The wave mechanism has found the widest acceptance among the mechanisms of atomization. In this theory the disintegration of liquid sheets or liquid jets is caused by the growth of unstable waves at the liquid–gas interface due to the aerodynamic interactions between the liquid and the gas. This type of instability is referred to as Kelvin-Helmholtz instability [18] and is characterized by unstable waves that appear in the fluid interface between two superimposed fluids of differing densities and velocities.

A number of previous studies [20,21] indicate that the curvature effect may be negligible due to the relatively small thickness of the liquid sheet compared to the radius of curvature. As a result, the liquid to be atomized may be modelled in a first approximation as a plane liquid sheet [22].

The waves are generated by factors such as pressure fluctuations or turbulence in the gas stream or liquid stream [23,24].
Due to aerodynamic interactions, the perturbations grow in magnitude and reach a maximum value. When the dynamic pressure ($\rho_a U_a^2 / 2$) of the air stream in air-blast atomization is large enough, the amplitude of the surface waves will grow if their wavelength (λ) exceeds a minimum value\cite{23–26}. There exists a dominant or most unstable wave number corresponding to the maximum growth rate and when the amplitude of the disturbance reaches a critical value, the wave detaches from the sheet to form shreds or ligaments, which rapidly collapse, forming drops. This process is shown in Fig. 3.

The system of forces acting on the slightly disturbed surface of a liquid sheet moving in air, are shown in Fig. 4. Surface tension forces try to return the protuberance back to its original position, but the air experiences a local decrease in static pressure (corresponding to the local increase in velocity) that tends to expand the protuberance further outward. This corresponds to the normal pattern of wind-induced instability, where surface tension forces oppose any movement of the interface from its initial plane and attempt to restore equilibrium.

The amplitude (A) of the surface waves on the liquid is described by the following differential equation\cite{25}:

$$\frac{dA}{dt} = A \left[\pi \beta \rho_a \frac{U_a^2}{\lambda} - \frac{8 \pi^2 \mu}{\rho a^2} \right]$$

where the subscript 'l' refers to liquid phase properties and the subscript 'a' refers to gas phase properties. From Eq. (2), it is seen that the amplitude, damped by liquid viscous force, increase as the air velocity increase. When both the aerodynamic pressure force and the surface tension forces are significant, the wave velocity u is given by\cite{23}:

$$u = \left[\frac{a}{\pi^2} + \frac{2 \pi \sigma}{\lambda \rho l} \right]^{1/2}$$

where a is the acceleration caused by the aerodynamic drag on the liquid jet, described by:

$$a = \frac{4 C_{D0} \sin^2 \zeta}{\pi D} \left(\frac{\beta \rho l^2}{2} \right)$$

where C_{D0} is the drag coefficient, ζ is the angle between the air and the liquid stream, D is the diameter of the liquid jet, and $\beta \rho l^2 / 2$ is the free stream aerodynamic pressure. Substituting Eq. (3) into Eq. (2) and assuming $U_a \gg u$ leads to the following equation:

$$\frac{dA}{dt} = A \left[\pi \beta \rho_a \frac{U_a^2}{\lambda} \left(\frac{a}{\beta \rho l ^2/2} \right) \right] - \frac{8 \pi^2 \mu}{\rho a^2}$$

Eq. (5) shows that the amplitude growth is resisted by surface tension (σ). Note that in this study the liquid velocity is negligibly small compared to the air velocity.

The minimum wavelength λ_m above which the amplitude grows exponentially with time, may be estimated by setting $dA/dt=0$. This results in the following cubic expression for λ_m:

$$\lambda_m^3 - \lambda_a \lambda_m^2 - \lambda_a^3 = 0$$

where

$$\lambda_a = \frac{2 \pi \sigma}{\rho l} \left(\frac{Z}{W} \right)^{2/3}$$

and

$$\lambda_a = \frac{64 C_{D0} \sin^2 \zeta}{n^* \rho l^2} \left(\frac{Z}{W} \right)$$

where λ_a and λ_m are the wavelengths of the capillary waves and acceleration waves, respectively, and $n^* = \rho l^2 / \beta \rho l^2$.

the shock dynamic pressure ratio. The Weber number (\(\text{We} = \frac{\rho a l^2}{\sigma} \)) represents the ratio of aerodynamic force to surface tension. And the Ohnesorge number (\(\mathcal{Z} = \frac{\mu}{\rho D^{1/2}} \)) contains only the properties of the globules formed in primary atomization before they split up into smaller drops during secondary atomization. It is sometimes called a stability group because it provides an indication of the resistance of a globule to further disintegration, but it is also called a viscosity group because it accounts for the effect of liquid viscosity on the globule.

When the aerodynamic pressure force predominates, waves propagate as acceleration waves at a minimum velocity of \((\lambda a / 2\pi)^{1/2} \). In this case, \(\lambda \ll \lambda_s \), and one solution to Eq. (6) is \(\lambda_s = \lambda_o \), which is governed by \((Z/\text{We})^{1/2} \), as shown in Eq. (7). In contrast, when the surface tension predominates, waves propagate as capillary waves at a minimum velocity of \((2\pi \alpha/3m^{1/2})^{1/2} \).

Additionally, the dimensionless ratio liquid/air should be considered in atomization processes. Ritz and Lefebvre [27] showed that the liquid/air interaction produces waves that become unstable and disintegrate into fragments. These fragments then contract into ligaments, which in turn break down into drops. They proved that with increase in air velocity, the liquid sheet disintegrates earlier and ligaments are formed nearer the lip. These proved that with increase in air velocity, the liquid sheet disintegrates into ligaments, which in turn break down into drops. They disintegrate into fragments. These fragments then contract into ligaments, and one solution to Eq. (6) is \(\lambda_s = \lambda_o \), which is governed by \(Z/\text{We} \), as shown in Eq. (8).

3.2. Dependence of SMD on the Weber number

Mansour and Chigier [29] studied the influence of the fluid viscosity on the Sauter mean diameter for non-Newtonian fluids. They found that the SMD increase with the apparent viscosity of the fluid according to the equation:

\[
\text{SMD} = f(Z^{2/5})
\]

(9)
The value of \(Z_2 \) was found insensitive to the variations in the air mass flow rate or air velocity.

3.3. Dependence of SMD on the Ohnesorge number

The linear dependence between SMD and \((1 + (M_l/M_a))\) is based on momentum balance and energy considerations:

\[
M_l U_s + M_a U_a = (M_l + M_a)V_u
\]

(11)

where \(V_u \) is the velocity of the atomized drop and the atomizing air after transferring part of its kinetic energy to the liquid. It is assumed that the total surface energy of the atomized droplets is proportional to the loss of kinetic energy:

\[
\sum N_i d_i \sigma_S = f(M_l U_s^2 + M_a U_a^2) - (M_l + M_a)V_u^2
\]

(12)

where \(N_i \) is the number of droplets with diameters \(d_i \) produced per unit time and \(\sigma_S \) is the droplet surface energy per unit area. Substituting Eq. (11) and

\[
M_l = \pi d_i^2 \sum N_i d_i^2 / 8
\]

(13)

into Eq. (12) yields

\[
\text{SMD} = f \left[1 + \left(\frac{M_l}{M_a} \right) \right]
\]

(14)

where

\[
\text{SMD} = \int \frac{D^3}{Dt} dN / \int D^2 dN
\]

(15)

3.3. Dependence of SMD on the Weber number

Experiments were conducted to examine the influence of the Weber number on the SMD. The effect of Weber number on the microcapsule SMD was examined by varying the air exit velocity. No variations of surface tension were undertaken. The data presented in Fig. 6 (SMD versus Weber number) were used to establish the functional dependence of the SMD on the Weber number. Fig. 6 shows that the SMD decreases with increasing Weber number.

The power dependence on the Weber number is examined by plotting the SMD data as a function of the Weber number at constant \((1 + (M_l/M_a))^{2.66}\). It has been previously established
that the effects of the air flow on the viscous behaviour of the polymeric solutions are negligible. Recall that the power dependence \(X \) of the SMD was nearly constant, irrespective of the Weber number \([29]\). In Section 3.2 it was also established that the power dependence of SMD on \((1 + (\dot{M}_l/\dot{M}_a))\) was 2.66. Thus, in order to extract the Weber number power dependence from the data presented in Fig. 6 should be correlated according to the following relation:

\[
\frac{\text{SMD}}{(1 + (\dot{M}_l/\dot{M}_a))^{2.66}} = f(\text{We})^{-0.2718}
\]

3.4. Semi-empirical model for air-blast atomization

Based on the above-mentioned wave mechanism, and considering the models proposed by Mansour and Chigier \([29]\) for atomization of non-Newtonian fluids, the following two- and three-parameter equations are proposed to predict the particle size of the microcapsules obtained:

\[
\text{SMD} = \left(1 + \frac{\dot{M}_l}{\dot{M}_a}\right)^{2.66} \left[X_2\text{We}^{-X_3} + X_4Z^X_5\right]
\]

(18)

\[
\text{SMD} = \left(1 + \frac{\dot{M}_l}{\dot{M}_a}\right)^{2.66} \left[X_2\left(\frac{\text{We}}{X_3}\right)^X_1\right]
\]

(19)

where \(D \) is the discharge orifice diameter.

According to Eqs. (18) and (19) together with the experimental data of microcapsules sizes the unknown variables, \(X_1, X_2, X_3, X_4, X_5\) were obtained (Table 2).

3.4.1. Comparison between experimental microcapsules size and model predictions

In order to obtain the experimental variation of the SMD of the microcapsules (behaviour curves) the effect of sodium alginate flow rate and the air flow rate were studied. The experimental microcapsules sizes obtained were compared with the models predicted sizes.

3.4.1.1. Sodium alginate flow rate variation.

The first set of experiments were carried out at constant value of pressurized flow air of 138 l/min and the sodium alginate flow rate was modified ranged from 0.003 to 0.037 l/min. It was previously checked, that sodium alginate flow rates lower than 0.003 l/min, did not generate an homogeneous regimen and flow rates higher than 0.037 l/min produced agglomerates.

The experimental SMD data obtained from the different experiments and the theoretical size of the microcapsules, calculated according to Eqs. (18) and (19), are shown in Fig. 8.
lated from Eqs. (18) and (19) are collected and were represented in Fig. 8. From this figure it can be seen that there is a very good agreement between the experimental data obtained and both proposed models.

3.4.1.2 Pressurized air flow rate variation. The second set of experiments was carried out at different pressurized air flow rate ranged from 78.40 to 138.00 l/min, at different constant flows of sodium alginate (0.003, 0.006, 0.009 l/min). Flow rates of pressurized air lower than 78.40 l/min, did not generate atomization. However, flow rates higher than 138.00 l/min generated turbulences on the of the barium chloride solution surface when atomization is performed.

The experimental SMD data obtained from the different experiments and the theoretical size of the microcapsules, calculated from Eqs. (18) and (19) are collected and were represented in Figs. 9–11. From this figures it can be seen that there is a very good agreement between the experimental data obtained and both proposed models.

4. Conclusions

It is the first time that two semi-empirical models have been proposed to predict the particle size obtained from a microencapsulation technology of polyelectrolyte complex beads, which produce based in atomization processes. The polymer used was sodium alginate as polyanion and barium chloride solution as polycation. To do that, an air-blast atomizer, was used.

The accuracy of the wave-mechanisms-based models in predicting droplet size after breakup of alginate solution has also been demonstrated. The atomized microparticle size were expressed in terms of three dimensionless groups, the liquid/air mass ratio, the Weber number and the Ohnesorge number in simple forms whose exponents and coefficients were determined by least-squares fit to the experimental data. The best correlations were found for the equations involving the exponent of the \(Z \)-dependency equal to the exponent of the \(W \)-dependency. This verifies the basic hypothesis that at the conditions of this study the waves propagate as acceleration waves.

There is a good agreement between the data obtained from the proposed models and the experimental data. This shown that the air-blast atomization theory can be used to predict the particle size obtained in a microencapsulation technique based in atomization processes.

References

